Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 441: 114279, 2023 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-36586489

RESUMO

Stem cell therapy has long been a popular method of treatment for Parkinson's disease currently being researched in both preclinical and clinical settings. While early clinical results are based upon fetal tissue transplants rather than stem cell transplants, the lack of successful integration in some patients and gradual loss of effect in others suggests a more robust protocol is needed. We propose a two-front approach, one where transplants are directly stimulated in coordination with host activity elicited by behavioral tasks, which we refer to as behavioral context. After a pilot with unilateral 6-OHDA rats transplanted with dopaminergic cells differentiated from mesenchymal stem cells that were optogenetically stimulated during a swim task, we discovered that early stimulation predicted lasting reduction of motor deficits, even in the absence of later stimulation. This led to a follow-up with n = 21 rats split into three groups: one stimulated while performing a swim task (Stim-Swim; St-Sw), one not stimulated while swimming (NoStim-Swim; NSt-Sw), and one stimulated while stationary in a bowl (Stim-NoSwim; St-NSw). After initial stimulation (or lack thereof), all rats were retested two and seven days later with the swim task in the absence of stimulation. The St-Sw group gradually achieved and maintained symmetrical limb use, whereas the NSt-Sw group showed persistent asymmetry and the St-NSw group showed mixed results. This supports the notion that stem cell therapy should integrate targeted stimulation of the transplant with behavioral stimulation of the host tissue to encourage proper functional integration of the graft.


Assuntos
Optogenética , Doença de Parkinson , Ratos , Animais , Oxidopamina/farmacologia , Doença de Parkinson/terapia , Neurônios Dopaminérgicos , Comportamento Animal , Modelos Animais de Doenças
2.
ACS Chem Neurosci ; 10(9): 4145-4150, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31390175

RESUMO

Intracranial injections are currently used to deliver drugs into the brain, as most drugs cannot cross the blood-brain barrier (BBB) following systemic injections. Moreover, multiple dosing is difficult with invasive techniques. Therefore, viable systemic techniques are necessary to facilitate treatment paradigms that require multiple dosing of therapeutics across the BBB. In this study, we show that mixed-surface fourth-generation poly(amidoamine) (PAMAM) dendrimers containing predominantly biocompatible hydroxyl groups and a few amine groups are taken up by cultured primary cortical neurons derived from mouse embryo. We also show that these dendrimers cross the BBB following their administration to healthy mice in multiple doses via tail-vein injections and are taken up by neurons and the glial cells as evidenced by appropriate staining methods. Besides the brain, the dendrimers were found mostly in the kidneys compared to other peripheral organs, such as liver, lungs, and spleen, implying that they may be readily excreted, thereby preventing potential toxic accumulation in the body. Our findings provide a proof-of-concept that appropriate surface modifications of dendrimers provide safe, biocompatible nanomaterial with the potential to deliver therapeutic cargo across the BBB into the brain via multiple tail-vein injections.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Dendrímeros/metabolismo , Nylons/metabolismo , Animais , Células Cultivadas , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...